EOG VOCABULARY REVIEW

	8.P.1 - Matter: Properties and Change		8.E.2 – Earth History
1.	are the building blocks of matter.	1.	Theory states that the Earth's
2.	An is a pure substance that CANNOT be		plates have moved over time, which has caused changes
	broken down into a simpler substance.		in climate, in geographic features such as mountains,
3.	A a pure substance that is made of two or		and in the types of living things in particular places.
	more and can be broken down by a chemical	2.	The Law of states that in any undisturbed
	reaction.		sequence of rocks, the layer is on top and the
4.	A is two or more substances that have been		is on the bottom.
•••	physically combined.	3.	fossils existed during a specific geologic age
5	Each substance in a mixture keeps its original	٥.	and can be used to predict the relative age of a rock.
٥.	Each substance in a mixture keeps its original	4.	age provides you the exact age of a rock or
6	You can separate a mixture by,,	٦.	fossil and is determined by using
Ο.		5	A is the preserved remains or traces of an
7	or A mixture is NOT uniform and the	٥.	organism that lived in the past.
,.	components can be visibly distinguished.	6	are used to study how atmospheric
Q	A mixture is uniform and you cannot see	0.	conditions have changed throughout Earth's history.
ο.	what it is made of.	7	Most of Earth's history is included in the Era
۵		٧.	•
	The particles in a solid are together.	0	during which there was little to no life on Earth.
10.	The particles in a gas are apart from each	ο.	The era we are currently living in is known as the
11	other.	0	Era.
	The particles in a solid are in place.	9.	We use evidence from,, and to
	The particles in a gas are moving quickly.		show that the Earth is constantly changing.
13.	As you move from a solid, to a liquid, to a gas, the		0.1.2 Diatashualam
	particles move and spread farther	4	8.L.2 - Biotechnology
4.4		1.	Biotechnology is the use ofto
14.	The arranges elements		solve problems and make useful products. For example:
4.5	according to increasing		creating pest resistant crops and producing new
	Elements in a group share similar	_	medicines.
16.	As you move from left to right across a period,	2.	The two main areas where you see biotechnology used
4-7	properties		are and
	Non-metals are conductors of electricity.	3.	Some of the of biotechnology are: gene
18.	Four properties of metals are: conductors of	_	crossing, cancer, unknown side effects.
	electricity, (can be made into wire), (can		me the of biotechnology are: finding cures to
	be flattened and shaped), and have (shiny).		eases, reducing the use of pesticides on crops, increasing
	The elements along the staircase are called	cro	p yields, and discovering new medicines.
20.	A change can be reversed and nothing new		
	is formed. For example: cutting paper, boiling water,	_	8.L.5 - Molecular Biology
	and melting ice cream.	1.	is a cellular process where the cell replicates
21.	A change cannot be reversed and something		in order to repair damaged cells or help the organism to
	new is created. For example: rust, burning, and rotting.	_	grow.
22.	Evidence of a chemical change includes,	2.	Plants use the energy from to make
	formation of a precipitate,, and increase in	_	·
	temperature.	3.	The reactants of photosynthesis are,
23.	The of states the		, and The products of
	mass and number of atoms in the reactants is equal to	_	photosynthesis are and
	the mass and number of atoms in the products. Matter	4.	breaks down the glucose produced
	be created or destroyed.		during photosynthesis to release
24.	During in a chemical reaction the atoms in the reactants		The digestion of food provides the body with the
	are to create a new product, but the total	nec	cessary reactants to perform
	number of atoms remains the		
25.	In an open container the mass of the products may be		
	if a gas is produced and not trapped.		

	8.L.4 - Evolution and Genetics		8.L.1 - Structures and Functions of Living Things
1.	The Theory of states that species change over	1.	A is any disease-causing agent.
	time in response to changes in their environment.	2.	The four types of pathogens are,,
2.	When an organism's environment changes they must		, and
	or they will become	3.	A is non-living. An example is the flu.
3.	Genetic increases a species chance for	4.	A is used to treat bacterial infections.
	survival.	5.	A is used to prevent viral infections.
4.	The ability of organisms to pass on favorable traits to	6.	A is an outbreak of a disease that occurs in a
	their offspring is called of the		localized area.
5.	A structure is used to show that organisms	7.	A is an outbreak of a disease that affects a
	share a common ancestor.		much larger region, usually global.
6.	The wings of a moth, a bird, and a bat are examples of structures.	8.	The best way to prevent epidemics and pandemics is by
7.	A favorable characteristic passed on from parents to		
	their offspring is called an An example is		
	the shell of a turtle.		
8.	Beneficial mutations that result in the survival of a		
	species and result in an entirely different organisms		
	over time is known as		
	8.L.3 - Ecosystems		8.P.2 - Energy: Conservation and Transfer
1.	is an interaction between species in which	1.	Energy resources that can be replaced or reused are
	one species eats the other.		called energy.
2.	A relationship exists between organisms of	2.	Examples of renewable energy resources are: biomass,
	two different species that live together in direct contact.		wind, water, and
3.	is a symbiotic relationships in which one	3.	is organic matter such as plant and animal
	organisms benefits at the expense of the other		waste that can be used as fuel.
	organism. For example: a flea and a dog.	4.	Energy resources that cannot be replaced or are used at
4.	is a symbiotic relationship in which both		a faster rate than which they are formed at are called
_	organisms benefits. For example: a crocodile and a bird.	_	energy.
5.	The is the ultimate source of the energy in an	5.	Examples of nonrenewable energy resources are: coal,
_	ecosystem.	_	natural gas, and
	The first trophic level includes		Burning fossil fuels releases which
	Another name for a producer is an		can lead to
	The second trophic level includes	7.	,, and are three ways that humans can conserve natural resources.
	Another name for a consumer is a		numans can conserve natural resources.
TU.	As you move up an energy pyramid, energy is In an ecosystem there are more than		
	in an ecosystem there are more than		
	·		
		1	

	8.E.1 - Earth Systems, Structures, and Processes					
1.	The Earth is% saltwater and% freshwater.					
2.	Most of the freshwater on Earth is					
3.	A is the land drained by a river and its tributaries.					
4.	is an area where nutrients are drawn to the surface of the ocean by the movement of cold water from the					
	bottom of the ocean to the top.					
5.	As you move from the open ocean to the deep ocean the amount of decreases.					
6.	are areas where fresh and saltwater mix. These areas have a wide variety of life and are more protected than					
	the open ocean.					
7.	Very water may not contain enough dissolved oxygen for organisms to survive.					
8.	Dissolved is a measure of the amount of oxygen in water that is available for aquatic organisms.					
9.	is a measure of how acidic or basic water is. When this measure of water quality is 7, the water is					
10.	0 are nutrients for plants that most often get into our water from agricultural runoff.					
11.	is a measure of how clear water is.					
12.	turbidity can lead to water temperature and dissolved oxygen.					
13.	are living organisms in a body of water that are sensitive to pollution. A wide indicates healthy					
	water.					
14.	are large deposits of groundwater that can be extracted and used.					
15.	source pollution comes from a single known source. For example: a factory is dumping nuclear waste into a					
	river.					
16.	source pollution comes multiple unknown sources. For example: agricultural runoff.					